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AbstractÐWe propose a rheological model for rock deforming in plane strain by slip on two sets of intersect-
ing, weak surfaces. We assume that the normals to the surfaces lie within the deformation plane, and that the
surfaces are unbounded and experience noninterfering slip. Where slip rate is linearly proportional to resolved
shear stress, the rock behaves as an incompressible, anisotropic ¯uid. For the simplest caseÐwhere the intrin-
sic slip behavior along the two sets is identicalÐthe principal axes of anisotropy are parallel and perpendicular
to the bisectors of the intersurface angles. For deformation rates parallel and perpendicular to these axes,
three behaviors may occur depending on the magnitude of the intersurface angle (2f). If 08E2f< 458 or
1358< 2fE1808 the rock is weaker in shear than in shortening or extension. If 458< 2f < 1358 it is stron-
ger in shear than in shortening or extension. Finally, if 2f= 458 or 1358, the rock behaves isotropically. As
applications, we use the derived constitutive relations to examine the response of a fractured layer to two com-
monly modeled types of folding: forced folding above a vertical fault and buckling of a layer embedded in an
isotropic medium undergoing shortening. # 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

In mathematical models of structures, it is convenient
to assume that the rocks behave as continua.
However, in reality, they contain weak slip surfaces
which may be active during deformation. The persist-
ent recurrence of slip on major faults is perhaps the
most often cited example of such behavior. For
instance, some early Tertiary (Laramide) monoclines
of the Colorado Plateau formed by slip on pre-existing
faults of Precambrian age (Walcott, 1890; Reches,
1978). Another often cited example is the pervasive
slip along pre-existing arrays of closely spaced, weak
fracture surfaces. For instance, the early formed min-
eral-®lled fractures found in granites of the west cen-
tral Sierra Nevada Batholith, have accommodated left-
lateral slip in a later tectonic episode (Segall and
Pollard, 1983a). In the ®rst example, deformation
involves the reactivation of widely spaced major faults;
in the second example, a pervasive fabric element is
reactivated.
In this paper we propose a continuum description of

a rock deforming primarily by the latter mechanism;
speci®cally, slip on pervasive sets of pre-existing sur-
faces. We formulate a plane strain rheological model
which predicts the response for two sets of intersecting
surfaces, whose spacing is small relative to the scale of
motions responsible for their deformation. We use the
model to examine the e�ects of variations in the inter-
surface angle on the bulk rheological behavior of the
rock mass. To illustrate the behavior, we model two

examples of folding deformation of a fractured layer.
The ®rst examines forced folding of a fractured layer
above a buried vertical fault; the second examines
buckling instabilities of a fractured layer embedded in
an isotropic medium.

CONSTITUTIVE RELATIONS FOR FRACTURED
ROCK

Formulating a model for the rheological behavior of
fractured rock is a formidable task. However, a useful
model may be obtained with some simplifying approxi-
mations. Consider ®rst the single set of roughly paral-
lel fractures (Fig. 1) in granodiorite, documented in
Segall and Pollard (1983b). The joints are open and
mineral ®lled. The segment of their map shown in
Fig. 1, is of an approximately horizontal surface show-
ing fractures that are bounded in extent. Exposures of
fractures on vertical cli�s have much the same appear-
ance, and the fractures are probably equant in form,
or `penny-shaped'. In an area some 10 km from the
example shown, ®lled joints of the same kind have
been involved, as weak surfaces, in a subsequent defor-
mation of the granodiorite (Segall and Pollard, 1983a).
Many, but not all of the fractures in this area, show
left-lateral displacements of a few centimeters to tens
of centimeters, which involve shearing of the weak
fracture-®lling material. Since the fracture surfaces are
bounded, slip implies an accommodating deformation
of the otherwise coherent rock which contains them. If

Journal of Structural Geology, Vol. 20, No. 5, pp. 491 to 502, 1998
# 1998 Elsevier Science Ltd

All rights reserved. Printed in Great Britain
0191-8141/98 $19.00+0.00

PII: S0191-8141(98)00002-9

491



the bulk shear of the rock is small, such accommo-
dation may be purely elastic, but larger shear strain
would require either local fracturing, linking of nearby
fractures, or large local ductile strain. In the cited
example, the ®rst process dominates.
For comparison, an idealized fracture set is shown

in Fig. 2(a). The fractures are parallel and unbounded.
Thus, no accommodation mechanism is needed for slip
(Fig. 2b) along the fractures. The macroscopic beha-
vior, at a scale much larger than the joint spacing,
depends only on the intrinsic joint surface behavior in
slip. Here, we shall initially adopt this idealization.
Evidently, slip accommodation must also lead to a
continuous change in the relations between bulk strain
rate and stress. This di�culty is also bypassed by con-
sidering the idealized con®guration.
The intrinsic behavior of a fracture surface, or ®lled

fracture, in shear might be approximated in several
ways. Perhaps the most familiar model involves fric-
tional behavior. The on±o� character of frictional
behaviorÐdepending on whether the resolved shear
stress is below or at the critical yield valueÐis not es-
pecially tractable from a mathematical point of view.
However, the shearing of a weak fracture ®ll at moder-
ately high temperatures, as in the example cited, can
be treated in terms of a creep law. Alternatively, if slip
is governed by dissolution and reprecipitation of a sol-
uble phase around roughness elements, as suggested by
®ber growth in the manner of di�usion-accommodated
grain-boundary sliding, a linear viscous creep law

might be appropriate. Since the latter is the simplest

law, we shall use it. While the structure of fracture sur-

faces may favor slip in a particular directionÐespe-

cially after some slip has already occurredÐwe shall

assume no such directional dependence here.

The shear rate arising from slip on a single set of

parallel surfaces (Fig. 2b), pervasive and uniformly

developed at the scale of interest, is taken to be line-

arly proportional to the resolved shear stress. If rates

of shearing on several such sets are tensorially

summed, and if the number of independent sets is suf-

®cient to admit an arbitrary deformation of the ma-

terial, the constitutive relations for the material are

those of an anisotropic linear viscous ¯uid. The com-

ponents of the rate-of-deformation tensor, Dij, will be

related to the components of the deviatoric stress

sij � sij ÿ �1=3�skkdij �1a�
by the linear relationship

Dij � Lijklskl �1b�

Fig. 2. Idealized, undeformed fracture array (a) composed of per-
fectly parallel, unbounded fractures as seen in a vertical outcrop.
The fractures posses a dip f, which, when measured in the fourth
quadrant, is negative. The axes x' and z' are parallel and perpendicu-
lar to the fractures, respectively. The y- and y'-axes are identically
equal and parallel to the strike of the fractures. Bulk deformation of
the rock mass (b) by a uniform rate of slip along the fracture sur-

faces in the x' direction.

Fig. 1. Fracture geometry mapped from a horizontal surface in the
Mount Givens Granodiorite of the Sierra Nevada Batholith. The
map is a subset of fractures documented from maps of the Ward
Lake outcrop compiled by Segall and Pollard (1983b). The fractures

strike N10±208E and dip steeply (70±908) to the east.
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where the tensor Lijkl might be termed the reciprocal
viscosity tensor.

Note that here, we treat each set of weak surfaces as
a `slip system' in the sense used in crystal plasticity.
This is clearly an approximation, and likely a crude
one, since slip on one set of weak surfaces will disrupt
the continuity of the others. Slip on multiple sets leads
to the development of additional, accommodating
structures (Robin and Currie, 1971) and most likely to
strain-hardening behavior. For this reason, our model
and existing models (Morland, 1976; Reches, 1979;
Amadei and Goodman, 1981; Patton and Fletcher,
1983) have the major feature in common that they
treat the slip on sets of fractures as independent and
tensorially summable, ignoring interference which
leads to hardening.

To illustrate our simple model, we consider a two-
dimensional limiting case. Only two sets of surfaces
are present, and the deformation is restricted to plane
deformation in the plane normal to their line of inter-
section. (Another two-dimensional case, not treated
here, would consist of antiplane deformation, with vel-
ocity parallel to the line of intersection.) Since the ma-
terial is incompressible, there are only two independent
components of the rate-of-deformation tensor, and
two independent sets of surfaces of the sort considered
su�cient to give an arbitrary deformation.
Let directions x and z be the principal directions of

the L-tensor for the plane deformation. The rate of de-
formation from one set, denoted `set 1' referred to co-
ordinates x' and z' parallel and normal to it (Fig. 2), is

Dxx0 � 0 �2a�

Dxz0 � D1sxz0 �2b�
where D1 is used as a convenient symbol. The two sets
will be oriented at angles of f1 and f2 to the principal
axis x, with one of the angles negative, the angle f2 say
(Fig. 3a). We write f1=fÿ d and f2=fÿ d, so the
dihedral angle between them is f1ÿf2=2f, and set 1 is
shifted closer to the x-axis by the bisector of the dihedral
angle, d which should not be confused with the
Kronecker delta (dij) in equation (1a).

Adding the contributions from the two sets, we
obtain,

Dxx � 1

2Zn

� �
sxx �3a�

Dxz � 1

2Zs

� �
sxz �3b�

where

1

Zn
��D1 � D2��1ÿ cos�4f� cos�4d��

ÿ �D1 ÿ D2� sin�4f� sin�4d� �3c�

1

Zs
��D1 � D2��1� cos�4f� cos�4d��

� �D1 ÿ D2� sin�4f� sin�4d� �3d�
In order that x and z are the principal axes for slip on
the two sets of surfaces described above, we require

D1 sin�4f1� � D2 sin�4f2� � 0 �4a�
from which we obtain

tan�4d� � �D1 ÿ D2�
�D1 � D2�
� �

tan�4f� �4b�

Obviously, if D1=D2, the principal axis bisects the
dihedral angle and d = 0. If the dihedral angle 2f is
small, we may use the linear approximation to
equation (4b), obtaining

Fig. 3. Intersecting fracture sets (a) with parallel strike, but arbitrary
dip (f1 and f2). Bisector of the fractures lying closest to the x-axis,
has the angle d with the x-axis, where ÿ908RdR908. Slip along the
two fracture sets is allowed to occur simultaneously and without
interference. Intersecting fracture sets (b) with parallel strike and

equal dip angle, but opposite dip direction. For this case, d= 0.
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d � �D1 ÿ D2�
�D1 � D2�
� �

f �5�

This shows that for this case, the more compliant, or
weaker, set is shifted closer to the x-axis.
The ratio

m � Zn
Zs
� �1� cos�4f� cos�4d� � � sin�4f� sin�4d��
�1ÿ cos�4f� cos�4d� ÿ � sin�4f� sin�4d�� �6a�

where

� � �D1 ÿ D2�
�D1 � D2�
� �

�6b�

is a useful measure of the nature of the anisotropy.
For m>1, the material is weaker in shear parallel to
either of the principal axes than it is in shortening or
extension, while for m< 1, the opposite holds. For an
isotropic material m= 1.
Notice that m is not a good measure of the strength

or degree of anisotropy, since m10 as well as m>>1
denote strongly anisotropic materials. An alternate
measure of strength of anisotropy is,

M � Zn ÿ Zs
Zn � Zs

� �
� mÿ 1

m� 1

� �
�7�

which varies from 1 to ÿ1 as m varies from 1 to 0,
and is zero for an isotropic material, m= 1.
Notice that the value of m does not change if the

value of f is augmented by p/2. This corresponds to
the same con®guration of the slip systems, but about
the z-axis. As a consequence, we cannot distinguish
between the `instantaneous' bulk behavior of the initial
material and one which has four sets of slip surfaces,
one pair of which has the same disposition about the
z-axis as the pair about the x-axis, except that the visc-
osities Zn and Zs of the second material will be halved
in absolute magnitude.
While the principal axes of a material with a pair of

slip systems separated by a dihedral angle, 2f, or a
speci®ed value of n, can be chosen in the above way,
one could alternatively choose a pair of principal axes
at 458 to the ®rst. To see this, we note that if f1 and
f2 are solutions to (4a), so are f1+(p/4) and f2+(p/
4). The m-value for this choice of principal axes is the
reciprocal of the other. That is, if Zn and Zs are the
viscosities in x- or z-parallel shortening or extension,
and in x- or z-parallel shear, respectively, for the ®rst
set of principal axes, then Z*

n=Zs and Z*
s=Zn are the

corresponding values for the second set of axes.
An example of another anisotropic viscous material

may help us to understand this. The material is made
up by the repetition of a pair of sti� and soft viscous
layers. This material is sti�er in layer-parallel extension
or shortening than it is in layer-parallel shear, and, by
the ®rst relation, it has the same behavior in layer-nor-
mal shortening or extension and layer-normal shear.
For the alternate choice of principal axes, at 458 to

layering, it is sti�er in shear parallel to one of the prin-

cipal axes than in shortening or extension.

A thought experiment with this material (which

could be readily analyzed in detail) brings out an im-

portant point about the present formulation. Consider

two experiments, both consisting of the simple shear-

ing of a slab of the layered material. In one, the layer-

ing is parallel to the slab surfaces; in the other, it is at

right angles to it. A previous comment indicates that,

in the ®rst instance, the behavior of both is the

sameÐi.e. the same relationship holds between the

rate of shear and the applied shear stress. However,

when the layering is parallel to the slab, continued

shearing does not e�ect the behavior, but when the

layering is initially normal to the slab, the shearing

causes a re-orientation of the layering and a change in

the properties, relative to specimen coordinates parallel

and normal to the slab. This e�ect is also present for

the materials modeled here, but, in analyzing particu-

lar deformations, we do not take it into account. The

present formulation approximates the material as one

of constant properties. This allows for the rotation of

the principal axes of anisotropy in the ¯ow, but it does

not allow for the re-orientation of the sets, relative to

each other, or for strain-hardening or strain-softening.

The approximation should be useful provided the de-

formation considered is not too large.

In further discussion, we shall simplify matters by

supposing that the two sets of surfaces have equivalent

slip behaviors, so that n = 0, and equation (6a)

reduces to

m � 1� cos�4f�
1ÿ cos�4f� �8�

Figure 4 shows m and M plotted against 2f.
The form of the relation shown in (8) suggested to

one reviewer that the expression for the ratio of princi-

pal viscosities was a matter of the geometry of the sets

of surfaces alone. The above development indicates

that this is not the case.

Notice that for the case of two equivalent sets,

n = 0, when the dihedral angle, 2f, is p/4, m= 1, and

the material is isotropic. The corresponding `fabric'

does not look isotropic, but in fact, isotropy or aniso-

tropy refers to a property of the material, not the dis-

position of its internal geometrical elements, and a

material may be isotropic with respect to a certain

propertyÐfor example, thermal conductivityÐbut not

with respect to anotherÐfor example, its elastic com-

pliance. The isotropy of this material may be intui-

tively easier to grasp if it is recalled that its behavior

cannot be distinguished from one in which the number

of slip systems is doubled, in the manner indicated.

The material then possesses four sets of weak surfaces,

the angular separation between the two is 458. If n$0,

the material cannot be isotropic.
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Modi®cation of the constitutive relations to include
matrix deformation

If, in addition to slip on sets of weak surfaces, the inter-

vening elements of sound rock undergo deformation, the

relations (3a) and (3b) may be modi®ed. In line with the

assumptions already made, let this additional defor-

mation be described by an isotropic, Newtonian viscous

law, with viscosity, Z0. Wemay then write

Dxx � 1

2Z�n

" #
sxx �9a�

Dxz � 1

2Z�s

" #
sxz �9b�

where

1

Z�n
� 1

Zn
� 1

Z0
�9c�

1

Z�s
� 1

Zs
� 1

Z0
�9d�

where Zn and Zs are the quantities already derived for the

slip on the two sets of weak surfaces. Addition of this

mechanism decreases the degree of anisotropy. It also

allows for arbitrary deformations of the material when

there is only a single set of weak surfaces (2f = 08), or
when the two sets are normal to each other (2f = 908).

BOUNDARY VALUE PROBLEMS

To better understand the rheological model, we
employ these constitutive relations to examine two fre-
quently modeled structural processes. The ®rst is
forced folding (drape folding) of a fractured surface
layer due to slip on an underlying, vertical fault. We
examine three distinct deformational geometries corre-
sponding to the three behavioral responses discussed
above. The second is the buckling, under uniform
shortening, of a fractured layer embedded in an isotro-
pic medium. We show plots which display the domi-
nant wavelengths and ampli®cation factors for folds
over a given range of bulk viscosity contrasts between
the layer and the medium.

Forced-fold models

The deformation of overburden due to slip on a bur-
ied vertical fault is a commonly modeled structural
con®guration (e.g. Sanford, 1959; Reches and
Johnson, 1978; Haneberg, 1992, 1993; Patton and
Fletcher, 1995). The often cited natural analog for the
model consists of a pre-existing vertical fault in crystal-
line basement overlain by a more compliant, but unde-
formed, layer of sedimentary rock. The basement
blocks to either side of the fault are treated as per-
fectly rigid, vertically translating past one another as
slip occurs along the fault. In practice, the basement
blocks themselves are not part of the mathematical

Fig. 4. Plot of anisotropy measures m and M, vs 2f. Schematic fracture orientations (two intersecting lines) located
alongM (solid circles) are measured relative to the x-axis (inset).
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model, but a displacement or velocity ®eld, inferred
from their motion, is imparted to the base of the over-
lying layer (Fig. 5a) as part of the layer's boundary
conditions (e.g. Patton and Fletcher, 1995). The upper,
planar surface of the layer corresponds to the Earth's
surface and is, therefore, stress free (Fig. 5a).
We can envision several geological circumstances

which would appropriately alter the homogeneous, iso-

tropic layer(s) assumed in the mathematical studies
cited above. An obvious modi®cation is the extreme
case where 2f approaches 08 about the x-axis, in
which the two near-horizontal surfaces are an analog
for a pervasive bedding fabric in the layer.
Alternatively, an early deformational event can be
envisioned which prepares the rock mass with frac-
tures, which are subsequently reactivated in a later

Fig. 5. Mathematical boundary conditions for the two folding models discussed in the text. (a) Forced-fold model for
which buried rigid blocks slipping along a vertical planar fault, impart a step-like vertical velocity ®eld to the base of the
fractured layer through the truncated series [w]0, the speci®cs of which are de®ned in Patton and Fletcher (1995). The
horizontal velocity component [u] imparted to the base of the layer is zero. The fractured layer has thickness H and is
stress free ([sns]H=[snn]H=0) at its upper surface. In the layer, m is a function of 2f and Zn is the viscosity of the layer
in shortening or extension parallel to the principal axes of anisotropy of the layer. See Patton and Fletcher (1995) for
further details on the boundary value problem. (b) Buckling model of a fractured layer with thickness H embedded in an
isotropic viscous medium. The model assumes that the sinusoidal interface (z) between the medium and the layer is
welded, hence shear stresses (sns), normal stresses (snn), and velocities (u,w) are equal across the interface. The layer is
subjected to a layer-parallel deformation rate Dxx where a shortening deformation rate is negative. In the medium,
mmed=1 and Zmed is its isotropic viscosity. In the layer, m is a function of 2f and Zn is the viscosity of the layer in short-
ening or extension parallel to the principal axes of anisotropy of the layer. See Johnson and Fletcher (1994) for further

details on the boundary value problem.
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deformational event. For example, fractured crystalline
basement subjected to peneplanation, becomes exposed
at the surface. Renewed faulting at depth would likely
occur along discrete shear zones, since higher con®ning
pressures would homogenize the rock, causing the
weak fracture surfaces to be ignored. However, at
lower con®ning pressures near the surface, the same
weak surfaces would become active in accommodating
the deformation associated with the faults at depth.
Alternatively, the deeper fractures could have been
healed. In either case, in our conceptual model, the
compliant surface layer corresponds to this shallow
zone where deformation along the pre-existing surfaces
predominates, while the rigid blocks correspond to
that portion of the basement dominated by discrete,
vertical shear zones.
In order to solve the boundary value problem of

interest, we require a stream function (e.g. Patton and
Fletcher, 1995). The stream function takes separate
forms for the three material behaviors being con-
sidered here (i.e. m>1; m= 1; m < 1). For m>1,

C1 � ÿ 1

l2
Aa1lz

1 � Aÿa1lz2 � Aa2lz
3 � Aÿa2lz4

h i
cos�lx�
�10a�

where

a1 �
���������������������������������������������
2mÿ 1�

��������������������
4m2 ÿ 4m
pq

�10b�

a2 �
���������������������������������������������
2mÿ 1ÿ

��������������������
4m2 ÿ 4m
pq

�10c�
For m = 1,

C2 �ÿ 1

l2
�B1 � B2�lzÿ 1��elz
n
��B3 � B4�lz� 1��eÿlz

o
cos�lx� �11�

For m < 1,

C3 � ÿ 1

l2
�C1 cos blz� C2 sin blz�eglz
n

��C3 cos blz� C4 sin blz�eÿglz
o
cos�lx� �12a�

where

b �
������������
1ÿm
p

�12b�

g � ����
m
p �12c�

In equations (10)±(12), l is the wave number 2p/L and
L is the wavelength. From this point forward, solution
of the boundary value problem follows treatments pre-
sented in Patton and Fletcher (1995).
A small amount of slip on the underlying basement

shear zone results in the distortion of the initially
square grid elements of the layer (Fig. 6). We have
chosen a time increment to yield a fault displacement

of 0.12 of the layer thickness. The width of the verti-
cal-fault shear zone at the base of the layer is approxi-
mately 0.05 of the fundamental wavelength and
approximately 0.4 of the layer thickness. These nu-
merical experiments examine variations in 2f such that
m varies through four orders of magnitude.

Figure 6(a) shows the deformation in a layer of rock
in which the fractures have either a very small or a
very large intersurface angle. We have chosen a value
of 10 for m which solving for 2f in equation (8) corre-
sponds to an angle of 17.58 or 162.58. The most pro-
nounced slip on fractures occurs in a narrow, vertically
aligned region within the layer, extending across the
entire layer. As a result, the upper surface of the layer
displays a velocity pro®le very similar to that imposed
at its base, forming a narrow, steeply dipping mono-
cline (or shear zone) with well de®ned hinges (or
boundaries).

Decreasing the value of m causes the zone of de-
formation to widen upward forming a wedge-shaped
region above the vertical fault in which the defor-
mation becomes more di�use upwards. Maximum
development of the wedge occurs when m= 1, the
isotropic case (Fig. 6b) for which 2f is equal to
458 or 1358. The pro®le of the upper surface of the
layer forms a wide, gentle monocline with broad
hinges.

As we continue to decrease m to values less than
unity, deformation becomes localized along the lateral
boundaries of the wedge of di�use deformation devel-
oped in the isotropic model. The internal portion of
the wedge becomes less and less deformed. At values
of m= 0.1, corresponding to a 2f of 84.38 or 95.78,
the layer (Fig. 6c) is divided into three relatively unde-
formed domains separated by two narrow shear-zone-
like regions of deformation converging downward to
the tip of the underlying vertical fault. The zone
towards the up-thrown side of the layer has a normal
sense of slip while that towards the down-thrown side
displays reverse slip. The upper surface of the layer
has taken on a stair-step pro®le, stepping upwards
toward the up-thrown side of the layer. The two shear
zones separating the ¯at regions of the ``steps`` are
expressed at the surface of the layer as two, steep-
limbed, narrow monoclines.

Buckling models

As a second example of the e�ect of anisotropy on
deformation, we present results for the two-dimen-
sional, cylindrical folding in plane ¯ow of an anisotro-
pic viscous layer in an isotropic viscous medium, and
for the simplest type of internal folding instability in
an unbounded volume of the material.

Folding of an anisotropic viscous layer in an isotropic
viscous medium. Two types of folding can take place in
anisotropic media (Biot, 1965). Interfacial instability is
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driven by the jump in the basic-state normal stress
di�erence at an interface between sti� and soft media.
Internal instability results from ampli®cation of a ¯uc-
tuation in the orientation of the principal axes of ani-
sotropy within the medium. As an approximation, the
two may be treated independently. Here, we ®rst con-
sider the interfacial instability of a sti� anisotropic vis-
cous layer embedded in a soft medium. For simplicity
the soft medium is taken to be an isotropic viscous
¯uid with viscosity Zmed. In the case considered, the
layer-medium interfaces are bonded.
The analysis of low-amplitude folding follows stan-

dard lines (Johnson and Fletcher, 1994), and employs
the same stream functions (10, 11 and 12) as de®ned in
the forced-fold case. Only the ®nal results are given
here. The instantaneous rate of ampli®cation of a fold
component with wavelength L and amplitude A is
given by

qjDxxj � 1

A

� �
dA

dt

� �
�13�

where Dxx is the uniform deformation rate parallel to

the layer boundary (Fig. 5b).

For m < 1, the perturbing ¯ow in the anisotropic

viscous layer is of the same form as that for an isotro-

pic power-law layer, with stress exponent n = 1/m,

and

q � ÿSgn�Dxx��
2n�1ÿ R�Sgn�Dxx�

�1ÿQ2�ÿ �nÿ1�
1=2��1�Q2��egkÿeÿgk��2Q�egkÿeÿgk��

2 sin�bk�
�14�

Fig. 6. Deformational response of symmetrically fractured rock layers due to slip on an underlying, vertical basement
fault. The intersurface angle 2f is the only parameter varied among the three models, and has values of (a) 17.58 or
162.58, (b) 458 or 1358, and (c) 84.38 or 95.78. Schematic diagrams of one of these fracture angles (measured relative to

the x axis) and values of m and M for each model are shown below the deformed grids.
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(Fletcher, 1974) where k � 2p�H=L�;R � �Zmed=Zn�;H
is the layer thickness, and rewriting g and b (12b and
c) in terms of the stress exponent

g �
���
1

n

r
; b �

�����������
1ÿ 1

n

r
and Q � R

g
�15�

Finally, Sgn(Dxx) = + 1, 0, and ÿ1 for Dxx>0,
Dxx=0, and Dxx<0, respectively.
For m>1, it is somewhat less convenient to work

out a closed-form solution for q. Instead, it is given by
the relations

q � ÿSgn�Dxx� � AF1 � CF2 �16a�
where

F1 � ea1�k=2� � eÿa1�k=2� �16b�

F2 � ea2�k=2� � eÿa2�k=2� �16c�
where a2 and a2 are given in (10b and c) and the quan-
tities A and C satisfy the relations

A�G1 � oF1� � C�G2 � oF2� � 0 �16d�

A�F1 � oG1� � C�F2 � oG2� � 2m

�2mÿ1� �1ÿR�Sgn�Dxx�
�16e�

where

o � mR

2mÿ 1
�16f�

G1 � ea1�k=2� ÿ eÿa1�k=2� �16g�

G2 � ea2�k=2� ÿ eÿa2�k=2� �16h�
The two quantities which provide a quick assessment
of the folding behavior are Ld/H, the ratio of the
dominant wavelength to the layer thickness (Biot,
1961), and qd, the maximum value of the quantity qÐ
the fold ampli®cation factorÐattained at the dominant
wavelength. These quantities are plotted in M(2f)Ð
log10(R) space in Fig. 7. Use of log10(R) provides a
convenient spread and form of contours of qd and Ld/
H; the parameter M likewise gives a compact and
appealing form to the contours. Notice the markedly
di�erent dependencies in the two regions, indicated by
the change in slope of the contours at the
boundaryM = 0 (m= 1) corresponding to the isotro-
pic layer.
Computation using equation (13) demonstrates that

ampli®cation by a factor of 10 in 10% shortening
requires qd=23; at qd=10, the corresponding ampli®-
cation is only about three. Hence, a well-developed
folding instability is con®ned to the region in which
qd>10, or, more likely, qdr23. Note that an increase
in m leads to a strong decrease in instability in the
region M>0 (m>1). Likewise, in this region, maxi-

mum instability occurs at values of Ld/H large in com-
parison to those observed in nature (e.g. Currie et al.,
1962). As we shall see shortly, internal instability in
these materials increases strongly with m, and is the
expected form that folding will take.

The region M < 0, or m < 1, alternatively describes
the initial folding instability for a layer composed of
an isotropic, but nonlinear, power-law ¯uid, or for the
presents an anisotropic linear viscous ¯uid which
deforms entirely, or chie¯y, by slip on sets of weak
surfaces. The strong instability and small Ld/H charac-
teristic of the power-law ¯uid with large stress expo-
nent (Fletcher, 1974; Smith, 1977, 1979) is accordingly
also expected in the latter material when the weak sur-
faces lie close to 458 (2f = 908) to the layer surfaces.

Internal instability in an unbounded volume of aniso-
tropic viscous ¯uid. Here, we consider only the case of
shortening parallel to a principal axis of anisotropy.
While, in structural geology, internal instability is com-
monly thought of in terms of the folding of thinly-
laminated or foliated material, it can also occur in
cases in which the underlying anisotropy arises in
other ways.

The simplest mode of instability is one in which the
orientation of the principal axis ¯uctuates sinusoidally
in x with angular magnitude Y = lA, but with no
variation in the z-direction, so that the vertical coordi-
nate of a surface traced so as to be always parallel to
the axis, and with mean height, z*, is

z�x; t� � z � �A cos�lx� �17�
This is the only mode of instability considered here. It
is the most unstable mode of instability in shortening
parallel to a principal axis chosen so that M>0(m>1).
Analysis of the perturbing ¯ow for (17) yields an ex-
pression of the form (13) with

q � qint � ÿSgn�Dxx��4�mÿ 1� � 1� �18�
where qint is the ampli®cation factor for the internal
instability. For large m, the instability in shortening,
Sgn(Dxx) =ÿ 1, can be large.

Since, in the plane-¯ow cases considered here, short-
ening parallel to one principal axis is equivalent to
extension parallel to the other, an instability may also
be said to be present in extension. Unlike a layer, the
in®nite medium has no reference direction, as in the
phrase `layer-parallel shortening'.

Here, however, we shall assume that the considered
mode of internal instability is a approximation to that
which would occur in a layer of the material embedded
in a soft medium. Thus, we may compare qint with the
value of qd for the interfacial mode, to roughly assess
the relative importance of interfacial instability and in-
ternal instability in the folding of the layer. Then, in
Fig. 7, the region m>1, or M>0, is divided into a
lower sub-region in which the interfacial mode is
dominant in the folding of the layer, and a upper
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region in which the internal instability is dominant.
The two sub-regions are divided by the locus
qintÿqd=0 (Fig. 7).

DISCUSSION

Models describing the deformation of fractured rock
can quickly become mathematically unmanageable if
we take into account even a few of the geometric, kin-
ematic and dynamic parameters of the process.
Nevertheless, simple mathematical models, such as de-
rived here, can provide an appreciation for the defor-
mational responses that might occur in nature.

For the simpli®ed, symmetric two-fracture case con-
sidered above, our model predicts that the rock mass
will behave as an anisotropic material in all but a very
restrictive case. The strength of the anisotropy will
have a strongly non linear dependence on the inter-
fracture angle, 2f, and may realistically vary by sev-
eral orders of magnitude. Two extremes in behavior
will occur. As 2f 4 08 or 1808 (m>1, M>0) the rock
massÐwhen deformed parallel and perpendicular to
the principal axes of anisotropyÐwill be weaker in
shear than in shortening or extension. Conversely,
when 2f 4 908 (m < 1, M < 0) the rock mass will be
stronger in shear than in shortening or extension. The
degree of anisotropy will decrease as 2f 4 458 or
1358. When 2f = 458 or 1358 (m = 1, M = 0) an iso-

Fig. 7. Contours of Ld/H (the ratio of the dominant wavelength to the layer thickness) and qd (the maximum value of
the quantity qÐthe fold ampli®cation factorÐattained at the dominant wavelength) in M(2f)Ðlog10(R) space.
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tropic behavior will occur. Although the present treat-
ment emphasizes a symmetric two-fracture system, the
model predicts similar types of behaviors for more
complex fracture systems as well.
Employing our model in geologically interesting

boundary value problems demonstrated a variety of
interesting structures. For discussion purposes it is
convenient to assume that 2f is measured about the x-
axis. Consider ®rst the vertical-fault model in which
zones of localized deformation occurred. For the case
of a large 2f(m>1, M >0), the response of the layer
(Fig. 6a) was to develop a narrow vertical zone of de-
formation above the fault. This is an intuitively
appealing result in that it is easy to visualize near-ver-
tical fractures (2f11638) as an extension of the
underlying fault. We might anticipate this response,
for example, in an area in which the sedimentary
veneer, pervaded by regional fractures, is being
deformed by basement-fault reactivation. However,
note again that the model makes no mathematical dis-
tinction between a fracture array with a large 2f and
one with a small, but complimentary angle
(2f = 17.58). Therefore, we anticipate a similar defor-
mational response for a pervasively bedded section
which permits easy slip along near horizontal, weak
surfaces (e.g. bedding planes). The resulting defor-
mation geometry in this latter sense would appear geo-
metrically similar to kink bands in foliated rock.
Localized zones of deformation are also predicted

for the case where 2f approaches 908 (m< 1, M < 0),
in which two 458 dipping planar zones converge down-
ward to the underlying fault (Fig. 6c). Again, this
result is intuitively appealing in that we can visualize
that the wedge above the fault is exploiting the 1428
dipping fractures at its boundary for slip. We might
anticipate this type of behavior where a Coulomb ma-
terial, with a small angle of internal friction, has seen
the development of a pervasive set of conjugate frac-
tures, or where orthogonal, intersecting discontinuities
(e.g. bedding and fractures) have been rotated to an
inclined orientation. The localized zones of defor-
mation described for these two cases (m>1 and
m< 1) widen and the deformation becomes more dif-
fuse as 2f departs from 08, 908 and 1808 until an iso-
tropic behavior occurs as 2f 4 458 or 1358 (Fig. 6b).
Our intuition serves us less well when considering

the bulk response of a fractured layer to shortening.
When we view outcrops pervaded with the products of
a brittle processÐi.e. fracturingÐperiodic folds are
not what we typically anticipate for the same rock at a
larger scale. Yet our mathematical description of one
potential behavioral response suggests that such fea-
tures are possible. Indeed, our model predicts that the
angle of the intersection of the fractures controls both
the dominant wavelength as well as the rate of ampli®-
cation of the buckling instability. For a ®xed R and H,
rocks displaying fractures with 2f1908 will display
strong ampli®cation of short-wavelength folds. As 2f

decreases towards the x-axis, longer wavelengths are
selected for ampli®cation, but the ampli®cation factor
is reduced. For the range of R considered in Fig. 7,
when 2f is reduced to a value somewhere between 408
and 308, the internal instability of the layer grows at a
greater rate than the interfacial instability.

The results of these two boundary value problems
in¯uence how we might think about natural structures
in two ways. First, the mathematical experiments
provide deformational geometries which allow for
interpretive alternatives when predicting subsurface re-
lationships. For example, the deformation geometries
displayed in Fig. 6 are signi®cant departures from
those portrayed in mathematical models of isotropic
(e.g. Sanford, 1959; Patton and Fletcher, 1995) or
layered (e.g. Reches and Johnson, 1978; Stein and
Wickham, 1980; Haneberg, 1992, 1993) sequences
deformed above vertical faults. Secondly, the defor-
mation geometries of the mathematical experiments
emphasize the potential of the fractured massÐdespite
the relatively brittle behavior of the intervening
lithonsÐto deform in bulk by folding. The results of
both of the above mathematical experiments have ap-
plication to regions in which the brittle vs ductile re-
sponse of a mechanical unit is at issue, such as the
debates concerning the response of the basement in the
Wyoming foreland (e.g. Matthews, 1986). Indeed, it is
appropriate to consider large-scale symmetric fold-
ingÐor by analogy to other studies of anisotropic
¯uids (e.g. Fletcher, 1974; Smith, 1977, 1979), anti-
symmetric foldingÐof the crust in light of this model
for polyphase deformed basement rocks. For example,
the large-scale pinch-and-swell (anti-symmetric folding)
mechanism for development of the Basin and Range
province proposed by Fletcher and Hallet (1983) could
also be attributed to an anisotropy associated with
pervasive fractures or faults.

Regardless of the application, rheological models
describing the deformation of a fractured rock mass
suggest that ®rst-order estimates of their behavior can
be made, and that predictable structures will evolve
from ®nite deformations of such masses.
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